NIST:超立方体上经典硬瞬时量子多项式电路的容错编译(2025) 51页

VIP文档

ID:73790

阅读量:0

大小:2.44 MB

页数:51页

时间:2025-06-06

金币:10

上传者:PASHU
PRX QUANTUM 6, 020338 (2025)
Fault-Tolerant Compiling of Classically Hard Instantaneous Quantum
Polynomial Circuits on Hypercubes
Dominik Hangleiter ,
1,*,†
Marcin Kalinowski ,
2,
Dolev Bluvstein,
2,
Madelyn Cain ,
2
Nishad Maskara ,
2
Xun Gao,
2,3
Aleksander Kubica ,
4,5
Mikhail D. Lukin,
2
and Michael J. Gullans
1
1
Joint Center for Quantum Information and Computer Science, NIST/University of Maryland,
College Park, Maryland 20742, USA
2
Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA
3
JILA and Department of Physics, University of Colorado, Boulder, Colorado 80309, USA
4
AWS Center for Quantum Computing, Pasadena, California 91125, USA
5
California Institute of Technology, Pasadena, California 91125, USA
(Received 13 June 2024; revised 10 February 2025; accepted 31 March 2025; published 28 May 2025)
Realizing computationally complex quantum circuits in the presence of noise and imperfections is a
challenging task. While fault-tolerant quantum computing provides a route to reducing noise, it requires
a large overhead for generic algorithms. Here, we develop and analyze a hardware-efficient, fault-tolerant
approach to realizing complex sampling circuits. We co-design the circuits with the appropriate quantum
error-correcting codes for efficient implementation in a reconfigurable neutral atom-array architecture,
constituting what we call a fault-tolerant compilation of the sampling algorithm. Specifically, we consider
a family of [[2
D
, D, 2]] quantum error-detecting codes whose transversal and permutation gate set can
realize arbitrary degree-D instantaneous quantum polynomial (IQP) circuits. Using native operations of
the code and the atom-array hardware, we compile a fault-tolerant and fast-scrambling family of such IQP
circuits in a hypercube geometry, realized recently in the experiments by Bluvstein et al. [Nature 626,
7997 (2024)]. We develop a theory of second-moment properties of degree-D IQP circuits for analyzing
hardness and verification of random sampling by mapping to a statistical mechanics model. We provide
strong evidence that sampling from these hypercube IQP circuits is classically hard to simulate even at
relatively low depths. We analyze the linear cross-entropy benchmark (XEB) in comparison to the average
fidelity and, depending on the local noise rate, find two different asymptotic regimes. To realize a fully
scalable approach, we first show that Bell sampling from degree-4 IQP circuits is classically intractable
and can be efficiently validated. We further devise new families of [[O(d
D
), D, d]] color codes of increasing
distance d, permitting exponential error suppression for transversal IQP sampling. Our results highlight
fault-tolerant compiling as a powerful tool in co-designing algorithms with specific error-correcting codes
and realistic hardware.
DOI: 10.1103/PRXQuantum.6.020338
I. INTRODUCTION
Quantum computers hold a promise to significantly out-
perform classical computers at various tasks. However, for
many envisioned applications, very low error rates below
approximately 10
10
are required [15], in stark contrast
to the state-of-the-art experimental physical error rates
*
Contact author: mail@dhangleiter.eu
D.H., M.K., and D.B. contributed equally.
Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license. Fur-
ther distribution of this work must maintain attribution to the
author(s) and the published article’s title, journal citation, and
DOI.
of approximately 10
3
. Quantum error correction (QEC)
provides a potential solution to this challenge by encod-
ing error-corrected “logical” qubits across many redundant
physical qubits [68]. In principle, QEC can exponen-
tially suppress the logical error rate by increasing the
code distance d, thereby promising a realistic route to low
error rates required for large-scale algorithms. However,
implementing QEC in practice is challenging. In addi-
tion to the large physical qubit overheads, QEC codes
typically realize a discrete gate set using native opera-
tions [9]. Although universal computation can be realized
through various techniques such as magic state distillation
[1012] and code switching [13,14], these are generally
very resource intensive. Thus devising hardware-efficient
and fault-tolerant realizations of quantum algorithms is
2691-3399/25/6(2)/020338(50) 020338-1 Published by the American Physical Society
资源描述:

这篇论文主要探讨了如何在超立方体上对经典难解的瞬时量子多项式电路进行容错编译,以实现高效且容错的量子采样。核心内容如下: 1. **背景与目标**:实现复杂量子电路面临噪声和缺陷挑战,容错量子计算虽能降噪但开销大。本文旨在开发一种硬件高效、容错的方法来实现复杂采样电路,通过设计特定量子纠错码和电路,在可重构中性原子阵列架构中高效实现采样算法。 2. **方法**:使用[[2D, D, 2]]量子纠错检测码,其横向和置换门集可实现任意D度瞬时量子多项式(IQP)电路。在超立方体几何结构中编译此类IQP电路,并通过映射到统计力学模型分析其硬度和验证随机采样。 3. **关键成果**: - **复杂度分析**:通过理论和数值研究表明,从超立方体IQP电路采样在经典计算中难以模拟,尤其在较低深度时,且线性交叉熵基准(XEB)可用于衡量量子优势。 - **验证方法**:提出双拷贝hIQP协议,通过在电路末端进行横向贝尔基测量实现高效验证,采样分布在4度及以上电路中经典计算难以模拟。 - **可扩展容错**:设计[[O(dD), D, d]]色码族,允许在噪声存在下进行可扩展的横向IQP采样,具备容错阈值,证明该方法的可扩展性。 4. **结论与展望**:低深度hIQP电路输出分布采样是实现容错量子优势的可行途径,实验应谨慎分析噪声机制,未来研究方向包括噪声对XEB的影响、如何更好利用有限纠错能力以及探索特定算法在高维色码中的实现等。

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
关闭