NIST:从欧姆到量子欧姆(2025) 11页

VIP文档

ID:74089

阅读量:0

大小:1.32 MB

页数:11页

时间:2025-07-11

金币:10

上传者:PASHU
From Ohm to Quantum Ohm
Paper Authors: Dean G. Jarrett and Albert F. Rigosi
Presenter: Dean G. Jarrett
National Institute of Standards and Technology
Gaithersburg, MD 20899
From the time of the founding of the National Bureau of Standards (NBS) in 1901 to the present,
resistance measurements have been among the research activities to realize electrical units at the
National Institute of Standards and Technology (NIST). The U. S. representation of the ohm has seen
many changes over the past 125 years including three adjustments (1948, 1990, 2019), advances in
standards and instrumentation, the discovery of the quantum Hall effect, and realization of the ohm by
fundamental constants. The standards and instrumentation have leveraged advances in technology and
evolved to support the many needs for resistance measurements over wider ranges with reduced
uncertainties. From the mercury ohm of the early days to the development of ultra-stable wire wound
resistance standards, to the quantum graphene standards of today and tomorrow: resistance metrology
has been a part of the research activities at NIST and the other national metrology institutes (NMIs) for
over a century. Looking towards the future, resistance measurements at NIST today focus on graphene
as a next generation of quantum resistance standard, the measurement needs of U. S. industry, and new
demands for resistance measurements and standards in applications ranging from low-current sensing
technologies to high current needs in the delivery of electric power. The historical past will be reviewed
and the present status presented with an outlook towards the future of the NIST Quantum Ohm.
Intro
The ohm, the unit of electrical resistance, has a rich and complex history, evolving over centuries from
early experiments to the sophisticated quantum standards of today. This report will explore that history,
highlighting key milestones, redefinitions, and the ongoing quest for increasingly accurate and reliable
resistance measurements.
Early Developments
The general idea of electrical resistance began to take shape in the 19th century, with Georg Simon
Ohm’s work. In 1827, Ohm discovered the empirical relationship V = IR, which quantified the
relationship between voltage (V), current (I), and resistance (R). This foundational law provided the basis
for measuring electrical resistance. Later in the 19th century, scientists like Gauss (1833) and Weber
(1851) contributed to the understanding of electrical quantities by showing that such quantities could be
measured in terms of mechanical units.
资源描述:

这篇文章主要介绍了美国国家标准与技术研究院(NIST)在电阻计量方面的发展历程,从欧姆定律的发现到量子霍尔效应的应用,以及未来的研究方向。 1. **早期发展**:19世纪,欧姆发现了V=IR的经验关系,为测量电阻提供了基础。1893年,国际电工大会定义了国际欧姆,1911年被采用。 2. **NBS/NIST的参与**:NBS成立于1901年,在电阻标准的开发和维护中发挥了关键作用。1948年、1990年和2019年,欧姆的定义发生了三次调整。 3. **可计算电容器**:1956年开发的Thompson和Lampard可计算电容器,在从机械单位绝对确定欧姆方面向前迈出了重要一步。 4. **量子霍尔效应**:1980年发现的量子霍尔效应为电阻标准提供了新的、高度稳定的基础,导致1990年欧姆的第二次重新定义。2019年,SI系统重新定义,导致NIST欧姆的第三次调整。 5. **现代电阻计量**:NIST继续在维护和传播美国的欧姆表示方面发挥关键作用,其电阻测量能力涵盖了从10⁻⁵Ω到10¹⁷Ω的广泛范围。 6. **基于石墨烯的量子电阻标准**:材料科学的最新进展使石墨烯成为量子化霍尔电阻(QHR)标准的有前途的替代品。2017年,NIST成为第一个使用基于石墨烯的量子霍尔电阻装置进行校准服务的国家计量机构。 7. **数字阻抗**:正在进行的一项工作包括开发一种专门用于比较电阻和电容的数字四臂桥。 8. **挑战和未来方向**:尽管取得了重大进展,但电阻计量仍面临挑战,包括将基于石墨烯的器件扩展到更大的横向尺寸。未来的一个有希望的方向包括开发量子电流传感器,以潜在地基于基本常数和量子现象实现安培。

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
关闭