NIST:量子反常霍尔器件的电导率空间等温行为(2025) 29页

VIP文档

ID:74090

阅读量:0

大小:2.72 MB

页数:29页

时间:2025-07-11

金币:10

上传者:PASHU
1
Conductivity Space Isotherm Behavior in Quantum Anomalous Hall
Devices
N. T. M. Tran
1,2†
, V. Ortiz Jimenez
1†
, M. Musso
3
, L. K. Rodenbach
4,5
, M. P.
Andersen
5,6
, H. M. Hill
1
, P. Zhang
7
, L. Tai
7
, K. L. Wang
7
, M. Marzano
8
, M.
Ortolano
3
, D. B. Newell
1
, C. A. Richter
1
, and A. F. Rigosi
1,a)
1
Physical Measurement Laboratory, National Institute of Standards and Technology (NIST), Gaithersburg, Maryland,
20899-8171, USA
2
Joint Quantum Institute, University of Maryland, College Park, MD 20742, USA
3
Department of Electronics and Telecommunications, Politecnico di Torino, Torino 10129, Italy
4
Department of Physics, Stanford University, Stanford, CA 94305, USA
5
Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, CA 94025,
USA
6
Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305, USA
7
Department of Electrical Engineering, University of California, Los Angeles, CA 90095, USA
8
Istituto Nazionale di Ricerca Metrologica, Torino 10135, Italy
The quantum Hall effect (QHE) has enhanced accessibility to measure and disseminate electrical units, owed in part to the
recently redefined International System of Units (SI) in 2019. Graphene remains one of the preferred options to realize the
ohm despite the limitations of high magnetic fields to produce a robust QHE. Topological insulators, on the other hand, show
promise in providing quantized resistance via the quantum anomalous Hall effect (QAHE), a phenomenon that removes the
need for magnetic fields during operation. To optimize future devices for metrological applications, it is important to gain a
better understanding of magnetically doped topological insulators like Cr-doped bismuth antimony telluride. The application
of differential conductivity space analyses offers a more sensitive way to analyze the data and distinguish between 2D and 3D
transport behaviors. This is particularly important in thin films where the transition between 2D and 3D behavior can be
subtle. The ability to confidently determine the dimensionality of the transport is crucial for selecting appropriate theoretical
models for future device optimization. Furthermore, this work identifies variable range hopping as the dominant transport
mechanism in the 2D regime using a rigorous statistical analysis (via the Bayes factor). These elements assist in the
understanding of microscopic processes that govern charge transport in these materials.
_____________________________
a)
Author to whom correspondence should be addressed. Mail: Albert Rigosi, MS 8171, 100 Bureau Drive, NIST, Gaithersburg, MD 20899.
资源描述:

本文是一篇关于量子反常霍尔器件中电导率空间等温线行为的研究论文。研究表明,量子反常霍尔效应(QAHE)有助于测量和传播电学单位。通过对Cr0.12(Bi0.26Sb0.62)2Te3器件的电阻率测量和电导率空间分析,发现该器件在二维输运区域表现出由传统可变范围跳跃驱动的强特征,并通过贝叶斯因子比较得到了严格的统计分析支持。 1. **实验过程**:在Perkin-Elmer超高真空分子束外延系统中生长MTI材料,制成MTI基器件,并在两个不同的设置中进行测试,通过修改栅极电压、温度和磁场三个参数来收集数据。 2. **实验结果** - **QAHE量化**:高质量的QAHE量化在栅极电压接近磁交换间隙中间(-1.9 V)时,能承受稍高的温度,滞后回线也更小。 - **双温度区域**:通过分析霍尔电阻和纵向电阻,发现了一个双温度区域,在0.6 K附近有一个交叉点。 - **电导率空间等温线**:计算了电导率空间等温线,发现了两个特征:等温线在一定温度以下形成一个凹陷特征;等温线随着温度的变化在垂直方向上有一个普遍的收缩和膨胀。 - **主导输运机制**:通过对电导率导数的分析,确定了可变范围跳跃(VRH)是二维区域的主导输运机制,并通过贝叶斯因子分析得到了进一步支持。

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
关闭