NIST:利用多体量子蒙特卡罗方法改进二维材料的性能预测(2025) 37页

VIP文档

ID:74397

阅读量:1

大小:10.57 MB

页数:10页

时间:2025-08-26

金币:10

上传者:PASHU
Toward improved property prediction of 2D materials using many-body
quantum Monte Carlo methods
Daniel Wines,
1, a)
Jeonghwan Ahn,
2
Anouar Benali,
3, 4
Paul R. C. Kent,
5
Jaron T. Krogel,
2
Yongkyung Kwon,
6
Lubos Mitas,
7
Fernando A. Reboredo,
8
Brenda Rubenstein,
9, 10
Kayahan Saritas,
2
Hyeondeok Shin,
11
Ivan
Štich,
12
and Can Ataca
13, b)
1)
Materials Science and Engineering Division, National Institute of Standards and Technology (NIST), Gaithersburg, MD 20899,
USA
2)
Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831,
USA
3)
Computational Science Division, Argonne National Laboratory, Argonne, IL 60439,
USA
4)
Qubit Pharmaceuticals, Incubateur Paris Biotech Santé, 24 rue du Faubourg Saint Jacques, 75014 Paris,
France
5)
Computational Sciences and Engineering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831,
USA
6)
Department of Physics, Konkuk University, Seoul 05029, Korea
7)
Department of Physics, North Carolina State University, Raleigh, NC 27695-8202, USA
8)
Material Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831,
USA
9)
Department of Chemistry, Brown University, Providence, RI 02912, USA
10)
Department of Physics, Brown University, Providence, RI 02912, USA
11)
Computational Science Division, Argonne National Laboratory, Argonne, IL 60439,
USA
12)
Institute of Informatics, Slovak Academy of Sciences, 845 07 Bratislava, Slovakia
13)
Department of Physics, University of Maryland Baltimore County, Baltimore MD 21250
(Dated: 22 August 2025)
The field of 2D materials has grown dramatically in the past two decades. 2D materials can be utilized for a variety
of next-generation optoelectronic, spintronic, clean energy, and quantum computing applications. These 2D structures,
which are often exfoliated from layered van der Waals materials, possess highly inhomogeneous electron densities and
can possess short- and long-range electron correlations. The complexities of 2D materials make them challenging to
study with standard mean-field electronic structure methods such as density functional theory (DFT), which relies on
approximations for the unknown exchange-correlation functional. To overcome the limitations of DFT, highly accurate
many-body electronic structure approaches such as diffusion Monte Carlo (DMC) can be utilized. In the past decade,
DMC has been used to calculate accurate magnetic, electronic, excitonic, and topological properties in addition to
accurately capturing interlayer interactions and cohesion and adsorption energetics of 2D materials. This approach
has been applied to 2D systems of wide interest, including graphene, phosphorene, MoS
2
, CrI
3
, VSe
2
, GaSe, GeSe,
borophene, and several others. In this review article, we highlight some successful recent applications of DMC to 2D
systems for improved property predictions beyond standard DFT.
1
I. INTRODUCTION
Since the synthesis of graphene in 2004 by Geim and
Novoselov that led to the 2010 Nobel Prize,
13
there has been
a)
Electronic mail: daniel.wines@nist.gov
b)
Electronic mail: ataca@umbc.edu
1
Notice: This manuscript has been authored by UT-Battelle LLC under con-
tract DE-AC05-00OR22725 with the US Department of Energy (DOE).
The US government retains and the publisher, by accepting the article for
publication, acknowledges that the US government retains a nonexclusive,
paid-up, irrevocable, worldwide license to publish or reproduce the pub-
lished form of this manuscript, or allow others to do so, for US govern-
ment purposes. DOE will provide public access to these results of feder-
ally sponsored research in accordance with the DOE Public Access Plan
(https://www.energy.gov/doe-public-access-plan).
an overwhelming interest in the field of 2D materials. 2D
materials are single-layer crystalline structures that have a
large lateral dimension compared to their thickness. Often-
times, these monolayers are exfoliated from layered materials
that are held together by weak van der Waals (vdW) bonds.
Due to their lack of surface groups or dangling bonds and
large surface-to-volume ratio, 2D materials can possess in-
teresting properties that are substantially different from those
of their bulk counterparts.
18
In addition, 2D materials can
possess enhanced quantum confinement and significantly re-
duced dielectric screening.
79
These materials also present
interesting phenomena such as enhanced carrier mobility,
13
reduction of charge carrier scattering,
16,9
superior mechani-
cal properties,
10
direct-to-indirect band gap transitions,
4
non-
trivial topological states,
1113
and superconductivity
14,15
and
magnetism in 2D.
16
These physical phenomena can be ex-
ploited for future applications in optoelectronics, spintronics,
quantum computing, and clean energy.
17,18
In addition to graphene, there exist several other synthe-
资源描述:

这篇论文围绕二维材料性质预测展开,阐述以多体量子蒙特卡罗方法改进二维材料性质预测,具体内容如下: - **背景与理论**:二维材料在过去二十年发展迅猛,在下一代光电子、自旋电子、清洁能源和量子计算等领域极具应用潜力。但其电子密度高度不均匀,用标准平均场电子结构方法(如密度泛函理论DFT)研究面临挑战。而扩散蒙特卡罗(DMC)等高精度多体电子结构方法可克服DFT局限。文章介绍了DMC理论,包括虚时间薛定谔方程、试探波函数、固定节近似等,还提及赝势、有限尺寸误差等对DMC计算的影响。 - **DMC在二维材料中的应用** - **磁性**:通过DMC模拟确定CrI₃、CrX₃ 、MnO₂ 、VSe₂等二维磁性材料的高精度结构、磁性参数和居里温度,明确电子关联效应在磁序中的作用,解决了DFT结果对密度泛函和 Hubbard U 参数敏感的问题。 - **电子性质**:研究二维材料的电子结构、激发态等性质。DFT和GW方法研究二维系统电子结构存在偏差,DMC可提供更准确结果,如在磷烯、MoS₂ 、氟化石墨烯、hBN、GeSe、GaSe及GaSₓSe₁₋ₓ合金等材料的带隙计算中与实验值吻合度高,还能研究自旋 - 轨道效应和拓扑态。 - **层间相互作用**:通过DMC计算研究双层磷烯、砷烯、石墨烯和石墨炔、双层和块状TiS₂ 、块状CrI₃ 、石墨烯支撑的Pt层等体系的层间结合性质,能准确描述层间复杂相互作用,为改进vdW描述提供指导。 - **内聚和吸附能**:用DMC计算碳、硼等二维材料的内聚能及原子/分子在二维材料上的吸附能,如O₂在石墨烯上的吸附、Pt簇在石墨烯上的吸附、H₂在石墨炔上的吸附、原子H在石墨烯上的化学吸附及石墨烯点缺陷形成能等,为实验合成和DFT泛函发展提供参考。 - **结论**:应用多体DMC方法能在多种二维材料系统中提升性质预测准确性,为该领域研究提供了高精度技术手段。

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
关闭