NIST:计量近室温光子数分辨探测器的设计研究(2025) 20页

VIP文档

ID:74508

阅读量:0

大小:2.13 MB

页数:20页

时间:2025-09-06

金币:10

上传者:PASHU
Academic Editors: Yuxi Ruan, Bin Liu
and Yuanlong Fan
Received: 18 July 2025
Revised: 12 August 2025
Accepted: 28 August 2025
Published: 3 September 2025
Citation: Levine, Z.H.; Bienfang, J.C.;
Migdall, A.L.; Zimmerman, N.M. A
Metrological Near-Room-Temperature
Photon-Number-Resolving Detector:
A Design Study. Sensors 2025, 25, 5470.
https://doi.org/10.3390/s25175470
Copyright: © 2025 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license
(https://creativecommons.org/
licenses/by/4.0/).
Article
A Metrological Near-Room-Temperature Photon-Number-
Resolving Detector: A Design Study
Zachary H. Levine
1,
* , Joshua C. Bienfang
1
, Alan L. Migdall
1,2
and Neil M. Zimmerman
3
1
Quantum Measurement Division, National Institute of Standards and Technology,
Gaithersburg, MD 20899-8410, USA; joshua.bienfang@nist.gov (J.C.B.); migdall@nist.gov (A.L.M.)
2
Joint Quantum Institute, College Park, MD 20742-0001, USA
3
Nanoscale Device Characterization Division, National Institute of Standards and Technology,
Gaithersburg, MD 20899-8423, USA; neil.zimmerman@nist.gov
* Correspondence: zlevine@nist.gov
Abstract
We describe and model a non-cryogenic optical detector designed to count incident photons
with metrological accuracy. Our design consists of a semiconductor device operating at
10
C and is predicted to resolve pulses of up to 10 photons with an error rate of 2% in
the input number of photons. We present an estimate of the overall device performance
using a combination of estimates and simulations of optical loss, discrete electron loss and
noise, and electronic noise.
Keywords: photon counting; room-temperature silicon device; low error rate
1. Introduction
An optical detector with metrological-grade photon-number error rate (i.e., a high
probability that the detector output correctly reports the number of photons incident on
its input) not only represents a primary standard for optical-power calibration, but also
provides a critical enabling technology for photonic quantum information science [
1
6
].
Unfortunately, achieving low photon-number error rate in real-world devices is uniquely
challenging because it requires both low noise and high single-photon system detection
efficiency, as well as high photon-number resolution. These challenges only increase as the
photon number increases. For example, a device with single-photon detection efficiency of
99% (1% error rate) has a 10 photon error rate of nearly 10%. Typically, the technologies
that provide the highest single-photon detection efficiency (typically, 99%) have required
cryogenic cooling, to 1 K or lower. On the other hand, detectors that operate near room
temperature do not reach the highest detection efficiencies or either do not provide clear
photon-number resolution [7] or provide very limited photon-number resolution [8,9].
The ability to detect single photons does not necessarily imply the ability to have a
photon-number resolving (PNR) device. For example, consider single-photon avalanche
detectors (SPADs) and microchannel plates. For such systems, although single photons can
be detected, the noise inherent in the first step of the avalanche process—it could yield two
or three or more electrons—means that these have not been candidates as PNR detectors to
date, at least not as single devices.
As a result, one common method to achieve some degree of photon-number resolution
is to multiplex non-PNR detectors to form a quasi-PNR detector [
10
,
11
]. Unfortunately,
this approach is inherently limited by the fact that there is always a non-zero probability
that multiple photons will end up at the same non-PNR detector, and the fact that the noise
Sensors 2025, 25, 5470 https://doi.org/10.3390/s25175470
资源描述:

“ A Metrological Near-Room-Temperature Photon-Number-Resolving Detector: A Design Study”由Zachary H. Levine等人撰写。文章介绍了一种用于精确计数入射光子的非低温光学探测器的设计和模型,该探测器工作在−10°C,预计能分辨多达10个光子的脉冲,光子数错误率为2%。 1. **背景**:具有计量级光子数错误率的光学探测器是光功率校准的主要标准和光子量子信息科学的关键技术,但实现低光子数错误率具有挑战性。目前的技术要么需要低温冷却,要么在室温下检测效率低或光子数分辨率有限。文中提出通过数值研究探索室温下实现计量级光子数分辨率探测器的可能性。 2. **设计与性能** - **系统概述**:光子通过抗反射涂层进入圆柱形吸收区域,产生电子 - 空穴对,电子在电场作用下被收集到浮动节点,影响附近MOSFET的电流,通过分析电流来确定光子数。 - **光吸收区域**:通过增加外部反射镜、优化孔径尺寸、选择合适的吸收长度等措施,提高光吸收效率,减少反射损失。 - **电子传输到浮动节点**:电子在电场作用下通过漂移和扩散运动到浮动节点,通过合理设计电极结构和电压,确保电子能够快速、有效地传输。 - **MOSFET和浮动节点**:电子在浮动节点影响MOSFET的电流,通过Comsol模拟分析MOSFET的电流 - 电压特性,确定检测电子数的可行性。 - **设备重置**:通过设置不同的电压,清除浮动节点和吸收区域的电子,完成设备重置。 - **载流子寿命效应**:考虑热产生载流子和表面载流子寿命对探测器性能的影响,选择合适的工作温度以降低误差率。 - **误差率估计**:模拟结果表明,该探测器在10个可见光光子的分辨能力上,光子数错误率为2.1%,能够满足设计要求。

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
关闭