NIST:适用于与碱原子参考兼容的宽带孤子微腔的300mm晶圆级SiN平台(2025) 6页

VIP文档

ID:74521

阅读量:1

大小:3.17 MB

页数:6页

时间:2025-09-09

金币:10

上传者:PASHU
Letter 1
300 mm Wafer-Scale SiN Platform for Broadband Soliton
Microcombs Compatible with Alkali Atomic References
SHAO-CHIEN OU
1,2
, ALIN O. ANTOHE
3
, LEWIS G. CARPENTER
3
, GREGORY MOILLE
1,2
, AND KARTIK
SRINIVASAN
1,2,*
1
Joint Quantum Institute, NIST/University of Maryland, College Park, USA
2
Microsystems and Nanotechnology Division, National Institute of Standards and Technology, Gaithersburg, USA
3
American Institute of Manufacturing Integrated Photonics (AIM Photonics), Research Foundation SUNY, Albany, NY, USA
*
Corresponding author: kartik.srinivasan@nist.gov
2025-09-07
Chip-integrated optical frequency combs (OFCs) based
on Kerr nonlinear resonators are of great significance
given their scalability and wide range of applications.
Broadband on-chip OFCs reaching visible wavelengths
are especially valuable as they address atomic clock tran-
sitions that play an important role in position, naviga-
tion, and timing infrastructure. Silicon nitride (SiN)
deposited via low pressure chemical vapor deposition
(LPCVD) is the usual platform for chip-integrated OFCs,
due to its low absorption and repeatable dispersion, and
such fabrication is now standard at wafer sizes up to
200
mm
. However, the LPCVD high temperature and
film stress poses challenges in scaling to larger wafers
and integrating with electronic and photonic devices.
Here, we report the linear performance and broadband
frequency comb generation from microring resonators
fabricated on 300 mm wafers at AIM Photonics, us-
ing a lower temperature, lower stress plasma enhanced
chemical vapor deposition process suitable for thick
(
700
nm
) SiN films and compatible with electronic
and photonic integration. The platform exhibits con-
sistent insertion loss, high intrinsic quality factor, and
thickness variation of
±
2
%
across the whole 300
mm
wafer. We demonstrate broadband soliton microcomb
generation with a lithographically tunable dispersion
profile extending to wavelengths of common alkali atom
transitions. These results are a step towards more highly
integrated and mass-manufacturable devices, enabling
advanced applications including optical clocks, LiDAR,
and beyond. © 2025 Optica Publishing Group
1
OCIS codes: (140.3498) Microcavity devices; (190.4390) Nonlinear optics,
integrated optics; (190.3270) Kerr effect
2
http://dx.doi.org/10.1364/ao.XX.XXXXXX
3
4
5
Optical frequency combs (OFCs) play a crucial role in diverse
6
fields owing to their evenly spaced spectral lines, broadband
7
coverage, and tunability [
1
]. Chip-scale integration is crucial
8
for real-world deployment, in creating compact, efficient, and
9
scalable metrology systems such as optical atomic clocks [
2
],
10
spectrometers [
3
], among others [
4
,
5
]. A promising approach to
11
realizing on-chip low-noise OFCs involves periodically extract-
12
ing a dissipative Kerr soliton (DKS) circulating within a micror-
13
ing resonator [
6
]. Silicon nitride (SiN) has emerged as a material
14
of choice for such microrings due to its combination of low linear
15
loss [
7
], high refractive index [
8
], broad optical transparency [
9
],
16
and strong Kerr effect [
10
]. SiN can also be integrated into con-
17
ventional microelectronic and photonic fabrication workflows,
18
allowing direct incorporation with high-frequency electronic
19
systems [11] and active photonic devices [12].20
There have been many demonstrations of SiN microcomb
21
fabrication on 100
mm
[
13
], 150
mm
[
14
], 200
mm
[
15
] platforms.
22
However, significant challenges remain in scaling such results to
23
a 300
mm
foundry process, primarily due to the large film stress
24
(typically 0.8 GPa to 1 GPa) and high temperature (
800
C) as-
25
sociated with the growth of thick stoichiometric (Si
3
N
4
) films by
26
low pressure chemical vapor deposition (LPCVD) [
16
], the stan-
27
dard approach for SiN DKS OFCs. Despite recent progress with
28
300
mm
LPCVD-fabricated chips [
17
,
18
], improvements in yield
29
and dispersion engineering are needed to take full advantage of
30
the 300
mm
scale fabrication. One potential approach is to inves-
31
tigate modified LPCVD deposition conditions, which have been
32
studied in both the stoichiometric [
19
] and non-stoichiometric
33
regimes [
8
], though a comprehensive process remains elusive.
34
On the other hand, plasma enhanced chemical vapor deposition
35
(PECVD) [
16
,
20
,
21
] and reactive sputtering [
22
,
23
] present al-
36
ternative solutions, but thus far research has primarily focused
37
on telecommunications-band applications and has yet to expand
38
to larger manufacturing-scale processes.39
In this Letter, we demonstrate broadband DKS microcomb
40
generation in a thick (
700
nm
)
SiN
platform based on 300
mm41
wafer-scale fabrication at AIM Photonics [Fig. 1a]. The PECVD
42
SiN
film is grown at
<
500
C on a 5
µm SiO
2
layer produced
43
by thermal oxidation of the silicon wafer, and from wafer deflec-
44
tion measurements, exhibits
280 MPa of mean compressive
45
stress. After patterning of the SiN layer, it is clad with 5
µm
of
46
CVD
SiO
2
, and a total of sixty-four reticle fields are harvested
47
from the 300 mm wafer. Each reticle field measures 26
mm ×48
资源描述:

这篇论文由美国国家标准与技术研究院(NIST)、美国制造集成光子学研究所(AIM Photonics)等机构的研究人员合作完成,报道了基于300mm晶圆级制造的厚SiN平台上实现宽带耗散克尔孤子(DKS)微梳的产生,为更高度集成和大规模可制造的光频梳器件奠定了基础。 1. **研究背景** - **光频梳的重要性**:光频梳具有均匀间隔的光谱线、宽带覆盖和可调谐性,在光学原子钟、光谱仪等领域发挥着关键作用。 - **氮化硅微梳的研究现状**:氮化硅因其低线性损耗、高折射率、宽光学透明度和强克尔效应,成为实现片上低噪声光频梳的理想材料。此前已在100mm、150mm和200mm平台上演示了氮化硅微梳的制造,但将这些结果扩展到300mm代工工艺仍面临重大挑战。 2. **实验设计** - **平台选择**:采用AIM Photonics的300mm晶圆级制造工艺,使用低温、低应力的等离子体增强化学气相沉积(PECVD)工艺生长厚(≈700nm)SiN薄膜,该工艺适合与电子和光子集成。 - **器件设计**:微环谐振器的设计旨在产生针对常见碱金属原子跃迁波长的宽带光频梳,通过调整环半径、环宽度、间隙和总线波导宽度等参数,优化微梳的产生。 3. **实验结果** - **线性性能**:对光纤到芯片面耦合和微环本征品质因数(Qi)进行测量,结果表明SiN薄膜在整个300mm晶圆上的厚度变化约为±2%,插入损耗和传播损耗低,Qi值与使用LPCVD Si3N4器件层的相同标称几何尺寸的器件相当。 - **宽带孤子微梳产生**:通过连续扫描泵浦激光,观察到调制不稳定性(MI)状态和各种孤子状态之间的产生和转变,最低步骤为单DKS状态。单DKS梳具有低噪声特性,光谱覆盖范围宽,与常见碱金属原子跃迁重叠。通过测量和模拟,验证了集成色散Dint与模拟设计的一致性,并确定了不同非线性行为的区域。 4. **研究结论** - **工艺优势**:该研究展示了在基于300mm代工的SiN平台上产生宽带克尔梳,制造工艺采用降低的薄膜应力和较低的沉积温度,有利于未来与其他材料集成用于先进应用。 - **厚度影响**:尽管不同ticle场之间存在厚度变化,但仍观察到在相当一部分晶圆上产生宽带单DKS梳,单DKS梳在常见碱金属原子跃迁附近表现出短色散波。 该研究为实现更高度集成和大规模可制造的光频梳器件迈出了重要一步,有望推动光学时钟、激光雷达等领域的发展。

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
关闭