NIST:用可扩展低温微量热计阵列获得的电子中微子质量的最严格束缚(2025) 10页

VIP文档

ID:74693

阅读量:0

大小:1.81 MB

页数:10页

时间:2025-10-01

金币:10

上传者:PASHU
Most Stringent Bound on Electron Neutrino Mass Obtained
with a Scalable Low-Temperature Microcalorimeter Array
B. K. Alpert ,
1
M. Balata ,
2
D. T. Becker ,
3
D. A. Bennett ,
1
M. Borghesi ,
4,5,*
P. Campana ,
4,5
R. Carobene ,
4,5
M. De Gerone ,
6
W. B. Doriese ,
1
M. Faverzani ,
4,5
L. Ferrari Barusso ,
7,6
E. Ferri ,
5
J. W. Fowler ,
1
G. Gallucci,
6
S. Gamba ,
4,5
J. D Gard ,
3
F. Gatti ,
7,6
A. Giachero ,
4,5
M. Gobbo ,
4,5
U. Köster ,
8
D. Labranca ,
4,5
M. Lusignoli ,
9,10
P. Manfrinetti ,
11
J. A. B. Mates ,
1
E. Maugeri ,
12
R. Moretti ,
4,5
S. Nisi ,
2
A. Nucciotti ,
4,5,
G. C. ONeil ,
1
L. Origo,
4,5
G. Pessina ,
5
S. Ragazzi ,
4,5
C. D. Reintsema ,
1
D. R. Schmidt ,
1,
D. Schumann ,
12
D. S Swetz ,
1
Z. Talip ,
12
J. N. Ullom ,
1
and L. R. Vale
1
1
National Institute of Standards and Technology (NIST), Boulder, Colorado, USA
2
Laboratori Nazionali del Gran Sasso (LNGS), INFN, Assergi (AQ), Italy
3
University of Colorado, Boulder, Colorado, USA
4
Dipartimento di Fisica, Universit`a di Milano-Bicocca, Milano, Italy
5
Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Milano-Bicocca, Milano, Italy
6
Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Genova, Genova, Italy
7
Dipartimento di Fisica, Universit`a di Genova, Genova, Italy
8
Institut Laue-Langevin (ILL), Grenoble, France
9
Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Roma 1, Roma, Italy
10
Dipartimento di Fisica, Sapienza, Universit `a di Roma, Roma, Italy
11
Dipartimento di Chimica, Universit`a di Genova, Genova, Italy
12
Paul Scherrer Institut (PSI), Villigen, Switzerland
(Received 17 March 2025; revised 3 July 2025; accepted 14 August 2025; published 29 September 2025)
The deter minat ion of the absolute neutrino mass scale re mains a fundamental op en questi on in particle
physics, with profound imp lications for both the standard model and cosmology. Direct kinematic
measureme nts, in dependent of model-dependent assumptions, provide t he most robust approach to
address this challenge. Here we presen t the most stringent up per bound on the effective electr on neutrino
mass ever obtained with a calorimetric measurement of the electron capture decay of
163
Ho. The HOLMES
experiment employs an array of ion-implanted transition-edge sensor (TES) microcalorimeters, achievin g
an average energy resolution of 6 eV FWHM with a scalable, multiplexed readout techniqu e. With a total
of 7 × 10
7
decay events recorded over two months and a Bayesian statistical analysis, we derive an upper
limit of m
β
< 27 eV=c
2
at 90% credibility. These results validate the feasibility of
163
Ho calorimetry for
next-genera tion neutrino mass experiments and d emonstrate the poten tial of a scalable TES-based
microcalorimetric technique to push the sensitivity of direct neutrino mass measureme nts beyond the
current state of the art.
DOI: 10.1103/s9vl-7n24
Measuring the mass of neutrinos or antineutrinos is one
of the last critical tasks that need attention to complete the
understanding of the standard model of elementary par-
ticles and their interactions. While next-generation neutrino
experiments are expected to tackle the mass-ordering
problem [1,2], and the neutrinoless double beta decay
searches probe the Majorana nature of neutrinos [36], only
direct neutrino mass experiments can provide the definitive
answer on the absolute mass scale. Additionally, increasing
tensions with the results of oscillation experiments make
the neutrino mass derived from cosmological observations,
analyzed within the framework of the ΛCDM model and its
extensions, less reliable [7,8]. The strength of direct
neutrino mass experiments is that they rely solely on the
conservation of energy and momentum in weak nuclear
beta decays to determine the neutrino mass observable
which, for current instruments, is approximated by the
effective (anti)neutrino mass m
β
¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P
i¼1;2;3
jU
2
ei
jm
2
i
q
,
*
Contact author: matteo.borghesi@unimib.it
Contact author: angelo.nucciotti@unimib.it
Contact author: dan.schmidt@nist.gov
§
Contact author: joel.ullom@nist.gov
Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribut ion to
the author(s) and the published articles title, journal citation,
and DOI. Funded by SCOAP
3
.
PHYSICAL REVIEW LETTERS 135, 141801 (2025)
Editors ' Suggestion
0031-9007=25=135(14)=141801(9) 141801-1 Published by the American Physical Society
资源描述:

【HOLMES Collaboration等机构】【2025年9月29日】发布《Most Stringent Bound on Electron Neutrino Mass Obtained with a Scalable Low-Temperature Microcalorimeter Array》;该文件的目的是通过直接运动学测量解决粒子物理中中微子绝对质量 scale这一基础未解决问题,利用163Ho电子俘获衰变的量热法获得更严格的电子中微子质量上限;该文件内容包括:一是实验采用64个离子注入163Ho的过渡边缘传感器(TES)微calorimeter阵列,通过频率复用读出技术,累计2个月数据、7×10^7次衰变事件,实现平均6 eV FWHM的能量分辨率;二是采用贝叶斯统计分析,将163Ho光谱模型化为Breit-Wigner峰右尾、shakeoff谱、低阶多项式及含中微子质量的相空间因子的组合,拟合13个自由参数;三是评估了堆垒效应、背景事件、能量响应函数等系统效应;该文件的结论是:通过分析获得电子中微子有效质量mβ在90%可信度下的最严格上限为27 eV/c²,验证了163Ho量热技术用于下一代中微子质量实验的可行性,展示了可扩展TES微calorimeter技术推动直接中微子质量测量灵敏度超越当前水平的潜力;该文件建议:未来需通过增加探测器数量(至约10^6个)、提高单探测器163Ho活性(至约100 Bq)、延长测量时间(至约10年)实现10^9倍统计量提升,同时解决能量刻度 extrapolation、量子效应等系统误差,可利用商业稀释制冷机或地下实验室部署以降低背景。

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
关闭